Author:
Ihara Tohru, ,Takahashi Yukio,Song Xiaoqi
Abstract
In this study, the “surface tension defined from stress” was used to predict the change in the cutting edge radius in the tool’s initial-stage wear regime. An analysis of the “surface tension defined from the stress” between solids showed that the flow of the material and the adhesion phenomenon must occur simultaneously at the interface. From the experimental and simulation results, it was confirmed that the proposed model can be used to predict the stress distribution acting on the cutting tool and evaluate the “surface tension defined from the stress” at the tool and workpiece interface. It was also verified that the cutting-edge radius under a state of equilibrium changes based on the cutting condition. These results indicate that simply using a cutting tool with a smaller cutting-edge radius will lead to a rapid increase in the cutting-edge retreat at the beginning of the cutting. For the unmanned operation of the cutting processes, it is desirable to use a cutting tool with a cutting-edge radius under a state of equilibrium at the beginning of the cutting to improve the cutting efficiency and reduce the cutting cost.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference30 articles.
1. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. of the Royal Society London A, Vol.324, pp. 301-313, 1971.
2. K. Takahashi, N. A. Burnham, H. M. Pollock, and T. Onzawa, “Stiffness of measurement system and significant figures of displacement which are required to interpret adhesional force curves,” IEICE Trans. on Electronics, Vol.80, No.2, pp. 255-262, 1997.
3. T. Sasada, “Frictional damage in solid surfaces: With special reference to the adhesive wear,” J. of the Society of Mechanical Engineers, Vol.75, No.641, pp. 905-912, 1972 (in Japanese).
4. E. Usui, “Modern cutting theory,” Kyoritsu Shuppan Co., Tokyo, 1990 (in Japanese).
5. T. Shibata, S. Fujii, A. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of brittle materials based on fracture behaviour,” J. of the Japan Society of Precision Engineering, Vol.62, No.11, pp. 1632-1637, 1996 (in Japanese).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献