Durability Test of Microtome Blades with the High-Precision Tissue-Sectioning Machine

Author:

Satoh Hirotaka1,Nakamae Keito1,Sasaki Takehiro1,Nanjo Hiroshi2,Nakamura Ryuta3,Kusumi Takayuki3,Akagami Yoichi4,Yoshino Masahiko1

Affiliation:

1. Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

2. Akita University Hospital, Akita, Japan

3. Akita Industrial Technology Center, Akita, Japan

4. Semboku City Office, Semboku, Japan

Abstract

In this study, the durability of microtome blades, used for sectioning paraffin blocks, was evaluated with the goal of improving the quality of sections in pathology tests. First, for the durability test of microtome blades, a sectioning test device that realizes stable sectioning operations was developed. This device comprised precise stages supported by cross-roller guides, achieving sufficient rigidness. This device allowed automated repetitive sectioning and simultaneously measured the principal and thrust cutting forces. Samples embedding porcine kidney and rib tissues were used for the durability test. Two types of blades with different blade edge angles were used. Additionally, the rake face and cross-section of blades, as well as H&E-stained sections, were observed. In the durability test with porcine kidney tissue, good quality sections were obtained even after 100 times of sectioning with both microtome blades, showing sufficient durability. However, in sectioning porcine rib tissue, the microtome blade with a large blade edge angle produced good-quality sections in the initial phase of the durability test; however, defects such as overlapping of folds were observed after 100 times of sectioning. Meanwhile, the microtome blade with a small blade edge angle experienced blade damage from the early phase of the durability test, resulting in the production of unsuitable preparations for pathology tests. These results indicated that the microtome blade with a small blade edge angle lacked durability against hard tissues such as porcine ribs.

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3