Author:
Tanaka Mototsugu,Takahashi Tomoyuki,Kimpara Isao, , ,
Abstract
In this study, the change in the tensile fracture behavior of HAp/PLA composites, interface-controlled using pectin and chitosan, was evaluated for the case of the early-stage hydrolysis. Here, the reaction between the HAp particles and modification polymers was controlled using o-nitrobenzyl alcohol. Tensile tests after immersion in a pseudo biological environment indicated that the interface-control method employed in this study improved the fracture properties of HAp/PLA composites significantly, inducing the large plastic deformation. In addition, the effects of early-stage hydrolysis on fracture behavior and mechanism are discussed from the viewpoint of interfacial structures for the interface-controlled HAp/PLA composites. Observations of fracture morphologies and surfaces suggest that the interface-control employed in this study successfully improved interfacial bonding, enabling the effective usage of the deformability of the PLA matrix. The interface-control method employed in this study also maximized the fracture strain through the combination of improved interfacial bonding and an increase in the ductility of the PLA matrix after a 2-week immersion. Test results also suggest that the cancelation induced by the degradation of chitosan accelerated the degradation of the PLA matrix after a longer immersion.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献