Author:
Mauro Stefano, ,Pastorelli Stefano,Scimmi Leonardo Sabatino
Abstract
The paper discusses a study on a real-time collision avoidance algorithm for collaborative robotics applications. Within the work it is considered that a vision system detects the position of an obstacle and defines an ellipsoid which completely includes it. A similar virtual ellipsoid is considered to include the end effector, and its pose is computed based on the robot configuration. The distance between ellipsoids is input into the collision avoidance algorithm based on the method of artificial potentials. The tuning of the algorithm is described herein, along with an analysis of its performance under different operating conditions. The results of two collision avoidance tests are also presented. For the first test, the end-effector must avoid a fixed obstacle placed along a planned path. For the second test, the obstacle is moving, following a trajectory that intersects that of the end-effector. Finally, the behavior of the algorithm with increasing velocities of the end-effector and obstacle is analyzed.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference19 articles.
1. http://www.robo-partner.eu/ [Accessed March 29, 2017]
2. G. Michalos, S. Makris, J. Spiliotopoulos, I. Misios, P. Tsarouchi, and G. Chryssolouris, “ROBO-PARTNER: Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories of the Future,” (CATS 2014) 5th CIPR Conf. on Assembly Technologies and Systems, 13-14, Dresden, Germany, pp. 71-76, November 2014.
3. http://www.pisa-ip.org/home/ [Accessed March 29, 2017]
4. T. Koskinen, T. Heikkilddota, and T. Pulkkinen, “Monitoring of co-operative assembly tasks: functional, safety and quality aspects,” Proc. of 2009 IEEE Int. Symp. on Assembly and Manufacturing (IEEE ISAM 2009), 17-20, Suwon, Korea, pp. 310-315, November 2009.
5. http://echord.eu/tirebot/ [Accessed March 29, 2017]
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献