The Detection of Unfused Powder in EBM and SLM Additive Manufactured Components

Author:

Tawfik Ahmed,Radwan Mohamed,Attia Mazen Ahmed,Bills Paul,Racasan Radu,Blunt Liam, ,

Abstract

Additive manufacturing (AM) is recognized as a core technology for producing high value, complex, and individually designed components as well as prototypes, giving AM a significant advantage over subtractive machining. Selective laser melting (SLM) or electron beam melting (EBM) are two of the main technologies used for producing metal components. The powder size varies, depending on the technology and manufacturer, from 20–50 μm for SLM and 45–100 μm for EBM. One of the current barriers for implementing AM for most industries is the lack of build repeatability and a deficit in quality assurance standards. The mechanical properties of the components depend critically on the density achieved; therefore, defect analysis and detection of unfused powder must be carried out to verify the integrity of the components. Detecting unfused powder in AM parts using X-ray computed tomography (XCT) is challenging because detection relies on variations in density. Unfused particles have the same density as the manufactured parts; therefore, detection is difficult using standard methods for density measurement. This study presents a methodology to detect unfused powders in SLM and EBM-manufactured components. Aluminum and titanium artefacts with designed internal defects filled with unfused powder are scanned with XCT and the results are analyzed with VGSTUDIO Max 3.0 (Volume Graphics, Germany) software package. Preliminary results indicate that detecting unfused powder in an aluminum SLM artifact with a 9.5 μm voxel size is achievable. This is possible because of the size of the voids between the powder particles and the non-uniform shape of the particles. Conversely, detecting unfused powder in the EBM-manufactured titanium artifact is less challenging owing to the uniform spherical shape and slightly larger size of the particles.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference35 articles.

1. A. Laptev et al., “Study of production route for titanium parts combining very high porosity and complex shape,” Powder Metallurgy, Vol.47, No.1, pp. 85-92, 2004.

2. F. P. Melchels et al., “Additive manufacturing of tissues and organs,” Progress in Polymer Science, Vol.37, No.8, pp. 1079-1104, 2012.

3. W. Gao et al., “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, 2015.

4. C. Chu, G. Graf, and D. W. Rosen, “Design for additive manufacturing of cellular structures,” Computer-Aided Design and Applications, Vol.5, No.5, pp. 686-696, 2008.

5. C. Lindemann et al., “Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing,” 23th Annual Int. Solid Freeform Fabrication Symp. An Additive Manufacturing Conf., Austin, Texas, USA, August 6-8, pp. 177-188, 2012.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3