Author:
Takasaki Masaya, ,Kotani Hiroyuki,Mizuno Takeshi,
Abstract
Surface acoustic waves (SAWs) are used in many applications. Here, we consider application of SAWs to actuators, which require relatively large vibration amplitudes. In conventional applications, a SAW propagates on a LiNbO3 substrate that serves as an elastic medium. This implies that the maximal size of a SAW transducer is limited by the LiNbO3 wafer size. Better actuators require larger-size SAW transducers. Here, we propose a transducer in which an excited SAW propagates on an inexpensive elastic medium (indirect excitation method). The method combines a piezoelectric material and a non-piezoelectric material substrate. These two materials are coupled. Electric energy is provided by an interdigital transducer (IDT). We designed and studied three different transducer configurations. To determine the optimal configuration, various materials and their combinations were considered with the proposed method. Electrical and mechanical characteristics were quantified in terms of the frequency response of admittance and vibration response, respectively. A suitable combination of materials was determined after measuring and analyzing the properties of different transducers. For this combination, the vibration velocity of the novel transducer was as large as that obtained using the conventional direct excitation method.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Surface Haptics using Ultrasonic Vibration;Journal of the Robotics Society of Japan;2018