Fast Estimation Method of Machinable Area of Workpiece Surface for 3+2-Axis Control Machining Using Graphics Device – Visualization Algorithm of Machinable Area and Minimum Shank Length with Texture Projection Technique –

Author:

Kaneko Jun’ichi, ,Yamauchi Yuki,Horio Kenichiro

Abstract

This study proposes a new method of estimating tool posture in 3+2-axis control machining process. The proposed method focuses on two different properties of the workpiece surface, the machinable area and then minimum shank length. The distribution of these properties on the workpiece surface is determined by the tool posture, workpiece shape, and the shape of the cutting tool. In the planning process of 3+2-axis control machining, CAM and CAPP operators often determine the combination of tool posture and tooling conditions through trial and error. Considering these processes, it would be extremely useful to have a fast method of visualizing these properties on the workpiece surface to realize CAM and CAPP systems with an interactive interface. Therefore, this study proposes a fast estimation method that visualizes both the machinable area and the distribution of the minimum shank length as a color image for each tool posture candidate. In order to reduce the calculation time of the proposedmethods, a graphics device known as a Graphics Processing Unit (GPU) is introduced. In the proposed algorithm to adapt several features to GPU hardware, the offset shape of the workpiece surface is generated from depth information in rendering 3DCG. Furthermore, the unmachinable area is estimated by the inverse-offset operation and shadow mapping function in 3D-CG techniques. In the visualization phase of the required shank length on the workpiece surface, a color image is generated from the depth information. Then, the color image is projected on the workpiece shape using the texture projection technique. Because most calculation processes can be executed inside the GPU hardware, the developed prototype system can visualize both the unmachinable area and the distribution of minimum shank length within several dozen milliseconds for each tool posture candidate.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Tool Shape Estimation Method Integrating Multidirectional Optical Measurement;International Journal of Automation Technology;2020-05-05

2. Development of Scanning Line Tool Path Generation Algorithm Using Boundary Position Information of Approximate Polyhedron of Complex Molds;International Journal of Automation Technology;2020-05-05

3. Accurate Tool Path Generation Method for Large-Scale Discrete Shapes;International Journal of Automation Technology;2019-03-05

4. Development of Tool Collision Avoidance Method Adapted to Uncut Workpiece Shape;International Journal of Automation Technology;2017-03-01

5. Recent Advances in Multiaxis Control and Multitasking Machining;International Journal of Automation Technology;2017-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3