Machinability Investigation for Cellulose Nanofiber-Reinforced Polymer Composite by Ultraprecision Diamond Turning

Author:

Kamada Yu, ,Yan Jiwang

Abstract

Cellulose nanofiber (CeNF)-reinforced polymer composites have wide potential applications in the manufacturing of optical and mechanical parts owing to their light weight, high mechanical strength, and optical transparency. In this study, CeNF-reinforced homogeneous polypropylene (PP-CeNF) was machined under various conditions by ultraprecision diamond turning, and the results were compared with those of pure PP without CeNF addition. The influence of CeNFs on material removal was investigated by examining the surface topography, chip morphology, cutting forces, and cutting temperature. It was found that the surface defects in pure PP cutting were surface tearing, while the surface defects of PP-CeNF were surface tearing and micro-holes induced by the pulling-outs of CeNFs. Surface tearing increased with cutting speed; pulling-outs of CeNFs were slightly affected by cutting speed but strongly dependent on the tool feed rate. Under a small tool feed rate, the surface roughness could be reduced to ∼10 nm Ra for PP-CeNF. The thermal effect was insignificant in the experiments, whereas the effect of strain rate-induced material hardening was dominant for both workpiece materials at a high cutting speed. This study helps to understand the mechanisms for ultraprecision cutting of CeNF-reinforced polymer composites and provides guidelines for improving the machined surface quality.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3