Author:
Yamane Satoshi, ,Matsuo Kouki
Abstract
Welding is an essential technology for joining metal plates. In general, gas metal arc welding (GMAW) generates a large amount of fumes in the welding of thick metal plates. In contrast, the butt joining of thick metal plates can be achieved using plasma arc welding (PAW) with a lower amount of fumes. Further, the improvement of the welding environment is critical in welding. In particular, if there are gaps between the base metals, the welding conditions are adjusted based on the gap. A visual sensor, such as a complementary metal-oxide-semiconductor (CMOS) camera, is useful for observing the welding situation. In this study, such a camera was attached to a plasma torch. During welding, we obtained weld pool images using the camera and detected the gaps by processing the images. As the arc light is very intense, it is difficult to obtain a clear image of the weld pool in PAW. In conventional welding, a constant current is used; however, pulsed welding current is used herein to obtain a clear image. The frequency of the current is 20 Hz, which indicates that the interval time is 50 ms. Moreover, the welding current was reduced to 30 A to minimize the effect of the intense arc light while the shutter of the CMOS camera was opened. The exposure time of the CMOS camera is 1 ms. Furthermore, gaps can be detected through image processing. It is necessary to identify the base metals with or without a gap. It was observed that the gap is darker than the solid area of the base metal. Moreover, a gap can be detected through the binarization method. The center area is not dark in the image of the weld pool without the gap. As the image of the weld pool is uneven without a gap, the binarization method can provide a detection result with some errors. Hence, it is challenging to identify whether there is a gap. A convolutional neural network (CNN) is useful for analyzing images. Thus, we applied a CNN to the weld pool image. If the gap is identified using the CNN, the binarization method is used to obtain the gap width. Hence, in PAW, welding conditions are adjusted based on the gap.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference27 articles.
1. J. N. Pires, A. Loureiro, and G. Bölmsjo, “Welding Robots: Technology, System Issues and Application,” Springer Science & Business Media, doi: 10.1007/1-84628-191-1, 2006.
2. Y. Hirota, Y. Mukai, A. Kawamoto, and J. Fujiwara, “Newly Developed Controls for Arc Welding Robot,” Int. J. Automation Technol., Vol.7, No.1, pp. 95-102, doi: 10.20965/ijat.2013.p0095, 2013.
3. J. Hicks, “Welded Joint Design,” Industrial Press, 1999.
4. T. Nakamura and K. Hiraoka, “Improvement of Welding Stability and Toughness Using Gas Metal Arc Welding in Pure Ar Shielding Gas,” Int. J. Automation Technol., Vol.7, No.1, pp. 109-113 doi: 10.20965/ijat.2013.p0109, 2013.
5. I. D. Harris et al., “Welding Handbook,” 9th edition, Vol.2, American Welding Society, 2004.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献