Improvement of Machining Performance of Small-Diameter End Mill by Means of Micro- and Nanometer-Scale Textures

Author:

Kawasegi Noritaka, ,Sugimori Hiroshi,Morita Noboru,Sekiguchi Toru, , , ,

Abstract

The purpose of this study is to develop novel cutting tools with micro- or nanoscale textures on their surfaces. Texturing micro- or nanoscale features on a surface allows us to control the tribological characteristics of the tool. For this research, textures were applied to end mills with a diameter of 0.5 mm using a femtosecond laser, and milling experiments were conducted on aluminum alloy to evaluate the developed tools. The applied texture decreased the cutting forces. This effect depends on the shape of the texture: groove textures are more effective for reducing friction and the resultant cutting forces. Periodic textures fabricated through the interference of the laser were effective at reducing the adhesion of the work material. A larger effect was obtained for shallow and large pitch textures. The results indicate that the proposed method is effective at improving the machining performance of small-diameter end mills.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3