Stabilization of Removal Rate in Small Tool Polishing of Glass Lenses

Author:

Satake Urara,Enomoto Toshiyuki,Miyagawa Teppei,Ohsumi Takuya,Nakagawa Hidenori,Funabashi Katsuhiro, ,

Abstract

The demand for improving the image quality of cameras has increased significantly, especially in industrial fields such as broadcasting, on-vehicle, security, factory automation, and medicine. The surface of glass lenses as a key component of cameras is formed and finished by polishing using small tools. The existing polishing technologies, however, exhibit serious problems including an unstable material removal rate over time. In our previous work, the mechanism of time variation in material removal rate was clarified. Based on the findings, a vibration-assisted polishing method using polishing pads containing titanium dioxide particles was developed for improving the stability of the material removal rate with the accumulated polishing time. Our experiments revealed that the proposed polishing method suppressed the time variation significantly in the material removal rate. The developed polishing pads, however, possessed a short life because of their poor wear resistance; as such, they could not be applied to the mass-production process of lenses. In this study, we applied the vibration-assisted polishing method to the polishing process using commercial polishing pads that exhibit sufficient wear resistance for practical use. To investigate the effect of vibration on the stability of the material removal rate, polishing experiments and the observation of slurry flow on the surface of the polishing pads during the vibration-assisted polishing process were conducted. Based on the findings, a new polishing method utilizing a large-amplitude high-frequency vibration applied to the polishing pressure was developed. In addition, a new polishing method utilizing the overhang of a polishing pad, where the polishing pad was moved to hang over the edge of the workpiece for incorporating periodic dressing processes of the polishing pad surface during the polishing process, was also developed. Our polishing experiments revealed that both the proposed polishing methods improved the stability of the material removal rate significantly over the course of the polishing process.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3