Environmental and Economic Evaluation of a Mechanical Biological Treatment System for a Small and Medium-Sized Waste Treatment Facility Considering the Karatsu Smart Disaster-Resilience Base Construction Project

Author:

Ogawa Akihisa, ,Pandyaswargo Andante Hadi,Yoshidome Daiki,Onoda Hiroshi

Abstract

We evaluated the feasibility of waste-generated heat using a 100-kW digestion gas engine at the Karatsu City Water Purification Center by evaluating its disaster resilience through four indicators. We achieved the best outcome, i.e., a power generation rate of 1,122 kW and a power self-sufficiency rate of 22% when two or more digestion gas engines were installed to supply waste-generated heat to the absorption chiller/heater of a water-pool. Additionally, we evaluated the environmental and economic aspects of a Mechanical Biological Treatment (MBT) system installed in Karatsu City. The results suggested that by installing an MBT system, the annual cost could be reduced by ∼100 million Yen and the power generation capacity could be increased to 4,310 kW; this could also help reduce 19,000 tons of annual CO2emissions with increased power generation. The environmental and economic feasibility assessment tool developed here is configurable; hence, applicable to other regions.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference31 articles.

1. Y. Gu, Y. Li, X. Li, P. Luo, H. Wang, Z. P. Robinson, X. Wang, J. Wu, and F. Li, “The feasibility and challenges of energy self-sufficient wastewater treatment plants,” Applied Energy, Vol.204, pp. 1463-1475, 2017.

2. M. Zhang, J. Gu, and Y. Liu, “Engineering feasibility, economic viability and environmental sustainability of energy recovery from nitrous oxide in biological wastewater treatment plant,” Bioresource Technology, Vol.282, pp. 514-519, 2019.

3. Japan Sewage Works Association, “Management of Wastewater in Japan,” 2016.

4. Ministry of the Environment, “Expansion and Centralization of Waste Management to Ensure Sustainable and Appropriate Treatment (Notice),” 2019.

5. A. Ogawa, H. Uehara, N. Tagomori, D. Yoshidome, and H. Onoda, “Feasibility study on MBT (Mechanical Biological Treatment) system by cooperation garbage incineration facilities and sewage treatment facilities (Through questionnaire survey for local governments and visualization by GIS),” Proc. of 2020 Symp. on Environmental Engineering, 2020.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3