Measurement and Control of Body Pressure Towards Smart Bed System

Author:

Ito Jun12ORCID,Usuki Shin2ORCID

Affiliation:

1. Advanced Institute of Industrial Technology, 1-10-40 Higashiooi, Shinagawa-ku, Tokyo 140-0011, Japan

2. Research Institute of Electronics, Shizuoka University, Hamamatsu-shi, Japan

Abstract

This research paper introduces a novel methodology for optimizing pressure dispersion in interactive bed systems, aiming to enhance sleep comfort while considering variegated body shapes and sleeping positions. By controlling the spring constant with precision, which is further optimized by a secondary differential filter, the proposed methodology assures ideal pressure distribution across the bed surface. At the heart of the proposed methodology lies the design of an interactive bed system that effectively responds to the unconscious postural shifts of the user during sleep. The implementation of a secondary differential filter in modulating the spring constant is an integral part of this approach, facilitating the crafting of a responsive bedding surface that promptly adapts to pressure alterations. The effectiveness of this novel method is verified through finite element method (FEM) analysis, which confirms successful pressure dispersion across the bed surface, an essential factor in enhancing sleep comfort. The research also proposes potential enhancements to this methodology, such as incorporating air-pressure control mechanisms, thereby introducing additional pressure control axes akin to those present in existing technologies. This study represents a significant stride forward in the advancement of interactive bed systems by presenting a new method for optimizing pressure dispersion, and hence, enhancing sleep comfort. The employment of FEM analysis not only validates the effectiveness of the proposed methodology but also highlights the potential for the future development of personalized and adaptive bedding solutions.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3