Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat

Author:

Brauer Elizabeth K.1ORCID,Balcerzak Margaret1,Rocheleau Hélène1,Leung Winnie1,Schernthaner Johann1,Subramaniam Rajagopal1,Ouellet Thérèse1

Affiliation:

1. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada

Abstract

Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum–resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trichothecenes and Fumonisins: Key Players in Fusarium–Cereal Ecosystem Interactions;Toxins;2024-02-06

2. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens?;International Journal of Molecular Sciences;2024-01-21

3. Applications of CRISPR/Cas in plants;Global Regulatory Outlook for CRISPRized Plants;2024

4. Genome Editing for Microbial Pathogens Resistance in Crops;Applications of Genome Engineering in Plants;2023-12-15

5. Using Gene Editing Strategies for Wheat Improvement;A Roadmap for Plant Genome Editing;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3