First Report of Brown Rot and Wilt of Fennel Caused by Phytophthora megasperma in Italy

Author:

Cacciola S. O.1,Pane A.2,Cooke D. E. L.3,Raudino F.4,Magnano di San Lio G.4

Affiliation:

1. Dipartimento di Scienze Entomologiche, Fitopatologiche, Microbiologiche Agrarie e Zootecniche, Plant Pathology Section, University of Palermo, 90128 Palermo, Italy

2. Dipartimento di Scienze e Tecnologie Fitosanitarie, University of Catania, 95125 Catania, Italy

3. Scottish Crop Research Institute, Invergworie, Dundee, Scotland, UK

4. Dipartimento di Agrochimica ed Agrobiologia, Mediterranean University of Reggio Calabria, 89061 Gallina di Reggio Calabria, Italy

Abstract

Fennel (Foeniculum vulgare Mill. var. azoricum (Mill.) Thell.) in the Apiaceae family is native to southern Europe and southwestern Asia. It is an economically important crop in Italy that produces approximately 85% of all fennel worldwide. The main producing regions are Apulia, Campania, Latium, and Calabria. During the late winter of 2004 in the Crotone Province of the Calabria Region, following heavy rains, patches of fennel plants with symptoms of brown, soft rot of the bulb-like structure formed by the thickened leaf bases, development of yellow leaves, stunting, and wilting of the entire plant were observed in fields. A homothallic Phytophthora sp. was isolated consistently from the brownish tissues of the stout stems and leaf bases of symptomatic plants using a selective medium (3). Pure cultures were obtained by single hyphal tip transfers. On potato dextrose agar (PDA), the diameter of oospores varied from 28 to 42 μm (mean = 36.3 ± 0.4). Antheridia were primarily paragynous. Sporangia were not produced on solid media but were formed in sterile soil extract solution. They were nonpapillate, noncaducous, ovoid and obpyriform (25 to 45 × 35 to 60 μm), and internally proliferating. Optimum and maximum temperatures for radial growth of the colonies on PDA were 25 and 30°C, respectively. At 25°C, radial growth rate was approximately 6 mm per day. On the basis of morphological and cultural characteristics, the isolates were identified as Phytophthora megasperma Drechsler. Electrophoretic patterns of mycelial proteins and four isozymes (acid and alkaline phosphatase, esterase, and malate dehydrogenase) on polyacrylamide gels of the fennel isolates were identical to those of reference isolates of P. megasperma of the BHR (broad host range) group included in P. gonapodyides-P. megasperma Clade 6 (1,3), but distinct from those of the isolates of other nonpapillate species included in Waterhouse's taxonomic group VI. Internal transcribed spacer (ITS) regions of rDNA sequences (2) confirmed that fennel isolates belonged to P. megasperma BHR group. Pathogenicity of a fennel isolate from Calabria (IMI 391711) was confirmed by pouring a zoospore suspension at 2 × 104 zoospores per ml on the soil of 10 3-month-old potted fennel plants. The soil of the inoculated and 10 control seedlings was flooded for 24 h. After 10 days, stems and leaf bases of the seedlings showed a brown rot. Chlorosis and wilting of all seedlings developed after 20 days. Controls inoculated with water did not develop any symptoms. The pathogen was reisolated from typical brown rot and tests were repeated with similar results. To our knowledge, this is the first report of P. megasperma causing disease on fennel. References: (1) S. O. Cacciola et al. For. Snow. Landsc. Res. 76:387, 2001. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (3) H. Masago et al. Phytopathology, 67:425, 1977.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3