Population Dynamics of Phialophora gregata in Soybean Residue

Author:

Adee E. A.1,Grau C. R.2,Oplinger E. S.3

Affiliation:

1. Former Research Associate

2. Professor, Department of Plant Pathology

3. Professor, Department of Agronomy, University of Wisconsin-Madison, Madison 53706

Abstract

Brown stem rot frequently is more severe in no-till cropping systems. Population density of Phialophora gregata was monitored in soybean residue positioned below and on the soil surface. Current season residue was confined in nylon mesh bags that were placed in the field in the fall. Population density of the pathogen was measured monthly through the winter, or seasonally for 30 months, and expressed as CFU per gram of soybean residue. Population dynamics of P. gregata differed in surface residue, compared with buried residue. Population density of P. gregata was not significantly different in buried and surface residue from November/December to April. Beginning in late April or May, population density of P. gregata was significantly greater in surface residue than in buried residue. The population density of P. gregata in surface residue remained above 105 CFU per gram of residue after 30 months in the field. In contrast, the fungus was not detected in buried residue after 11 to 17 months. From November to May, the population destiny of P. gregata in surface residue increased more than 14 times the initial density. In contrast, the density of P. gregata in buried residue increased sixfold by April, then decreased to densities not significantly different from the initial population by May and June. Mass of buried residue decreased more rapidly than that of surface residue during April, May, and June. There was a positive correlation between residue weight and the population density of P. gregata in residue. P. gregata survived longer and at higher population densities in residue positioned on the soil surface (simulated no-till) than in buried residue (simulated conventional tillage). Although inoculum density of P. gregata remained high in surface residue, total inoculum declined because of loss of residue biomass.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3