Survival, Dispersal, and Primary Infection Site for Cercospora beticola in Sugar Beet

Author:

Khan J.1,Rio L. E. del1,Nelson R.1,Rivera-Varas V.1,Secor G. A.1,Khan M. F. R.2

Affiliation:

1. Department of Plant Pathology, North Dakota State University, Fargo 58105

2. North Dakota State University and University of Minnesota

Abstract

Cercospora beticola survives as stromata in infected crop residue. Spores produced on these survival structures serve as primary inoculum during the next cropping season. This study was conducted to determine how long C. beticola can survive at different soil depths, the mechanism of inoculum dispersal, and the primary infection site in sugar beet. Longevity of C. beticola was studied over a 3-year period under field conditions at Fargo, ND. C. beticola-infected leaves were placed at depths of 0, 10, and 20 cm and retrieved after 10, 22, and 34 months. Survival of C. beticola inoculum declined with time and soil depth. Inoculum left on the soil surface, 0 cm in depth, survived the longest (22 months) compared with that buried at 10 cm (10 months) and 20 cm (10 months). C. beticola dispersal from the primary source of inoculum was studied in the field for three growing seasons. Sugar beet plants were surrounded with plastic cages with and without ground cover, or exposed with and without ground cover. Significantly higher disease severity was observed on exposed plants than caged plants with or without ground cover, suggesting that wind was the major dispersal factor for C. beticola inoculum. The primary infection site by C. beticola was determined in a greenhouse study. Leaves, roots, and stems of healthy sugar beet plants were inoculated with C. beticola. Cercospora leaf spot symptoms were observed only on plants that were leaf inoculated, suggesting that the leaf was the primary infection site for C. beticola.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3