Spatiotemporal Distribution Pattern of Sclerotinia sclerotiorum Apothecia is Modulated by Canopy Closure and Soil Temperature in an Irrigated Soybean Field

Author:

Fall Mamadou L.1,Willbur Jaime F.2,Smith Damon L.2ORCID,Byrne Adam M.3,Chilvers Martin I.3ORCID

Affiliation:

1. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing

2. Department of Plant Pathology, University of Wisconsin-Madison, Madison

3. Department of Plant, Soil and Microbial Sciences, Michigan State University

Abstract

Identifying the optimal timing for fungicide application is crucial in order to maximize the control of Sclerotinia stem rot (SSR), which is caused by Sclerotinia sclerotiorum. In this study, the impact of canopy closure and soil temperature on apothecia production was investigated to optimize fungicide application timing. Replicated soybean plots with a row spacing of 0.36 and 0.38 or 0.76 m were established in 2015 and 2016 in an irrigated soybean field at Michigan State University’s Montcalm Research Center. The number of apothecia and ascospores and the incidence of SSR were monitored two times per week for 10 to 12 weeks. In both row-spacing trials, apothecia were observed earlier in 2016 (before the R1 growth stage) than in 2015 (between R1 and R2). The maximum number of apothecia was 50 times higher with the 0.36-m row spacing than with the 0.76-m row spacing in 2015 but was 2.5 times higher with the 0.76-m row spacing than with the 0.38-m row spacing in 2016, though the overall numbers were much lower in 2016. The apothecia distribution pattern was synchronized with the canopy closure pattern and the soil temperature profile. The peak number of apothecia was observed when canopy closure reached at least 50% and when average soil temperature in the row was between 21.5 and 23.5°C. In 91% of the cases, the presence of apothecia was observed when the percentage of light blocked was 70%, and no apothecia germinated in the absence of light or under full light exposure. During the first 50 days after plant emergence, the rate of canopy closure was higher in 2016 than in 2015, and the first diseased plant was observed earlier in 2016 (R2) than in 2015 (R5). Canopy closure and the distance of the sampling point from the soybean row explained much of the variability in the number of apothecia. These results can partially explain the inconsistent efficacy of fungicide applications based on the soybean growth stage and will be helpful for informing disease models and fine-tuning fungicide application strategies.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3