Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards

Author:

Fedele Giorgia1,González-Domínguez Elisa2,Delière Laurent3,Díez-Navajas Ana M.4,Rossi Vittorio1ORCID

Affiliation:

1. Department of Sustainable Crop Production, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy

2. Horta srl, 29122 Piacenza, Italy

3. SAVE, INRA, Villenave d’Ornon, France

4. NEIKER-Tecnalia, Centro de Arkaute-ko Zentroa, Vitoria-Gasteiz, Spain

Abstract

The current study validated a mechanistic model for Botrytis cinerea on grapevine with data from 23 independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model was operated for each vineyard by using weather data and vine growth stages to anticipate, at any day of the vine-growing season, the disease severity (DS) at harvest (severe, DS ≥ 15%; intermediate, 5 < DS < 15%; and mild, DS ≤ 5%). To determine the ability of the model to account for latent infections, postharvest incubation assays were also conducted using mature berries without symptoms or signs of BBR. The model correctly classified the severity of 15 of 23 epidemics (65% of epidemics) when the classification was based on field assessments of BBR severity; when the model was operated to include BBR severity after incubation assays, its ability to correctly predict BBR severity increased from 65% to >87%. This result showed that the model correctly accounts for latent infections, which is important because latent infections can substantially increase DS. The model was sensitive and specific, with the false-positive and false-negative proportion of model predictions equal to 0.24 and 0, respectively. Therefore, the model may be considered a reliable tool for decision-making for BBR control in vineyards.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3