Virulence and Molecular Diversity in the Cochliobolus sativus Population Causing Barley Spot Blotch in China

Author:

Guo Huanqiang1,Yao Quanjie1,Chen Lin1,Wang Fengtao1,Lang Xiaowei1,Pang Yunxing1,Feng Jing1ORCID,Zhou Jun2,Lin Ruiming1ORCID,Xu Shichang1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China

2. Hongxinglong Agricultural Science Research Institute, Shuangyashan 155811, People’s Republic of China

Abstract

Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is a limiting factor for barley (Hordeum vulgare) production in northeast China, which causes significant grain yield losses and kernel quality degradation. It is critical to determine the virulence diversity of C. sativus populations for barley resistance breeding and the judicious grouping of available resistance varieties according to the predominant pathotypes in disease epidemic regions. With little information on the barley pathogen in China, this study selected 12 typical barley genotypes to differentiate the pathotypes of C. sativus isolates collected in China. Seventy-one isolates were grouped into 19 Chinese pathotypes based on infection responses. Seventeen isolates were classified as pathotype 3, which has only been identified in China, whereas most (52 of 71) were classified as pathotype 1. All of the tested isolates had low virulence on the North Dakota (ND) durable, resistant line ND B112. Using 22 selected amplified fragment-length polymorphism (AFLP) primer combinations, genetic polymorphism was used to analyze 68 isolates, which clustered into three distinct groups using the unweighted pair group method average with the genetic distance coefficient. No relationship was found between the virulence of isolates and their origins. Isolates of the same pathotype or those collected from the same location did not group into clusters based on the AFLP analysis.

Funder

China Agriculture Research System

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3