Affiliation:
1. Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; and Norwegian University of Life Sciences, 1433 Ås, Norway
2. Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway
Abstract
Production of inoculum of Colletotrichum acutatum from both previously infected and overwintered tissue, as well as newly developed plant tissue of sour cherry (Prunus cerasus), was studied in southern Norway. Plant parts were sampled from commercial, private, or research orchards, and incubated for 2 to 14 days (time depended on tissue type) in saturated air at 20°C. In early spring, abundant sporulation was found on scales of overwintered buds and shoots. A mean of 35% infected buds in four cultivars was observed, with a maximum of 72% of the buds infected in one of the samples. Over 3 years, the seasonal production of overwintered fruit and peduncles of cv. Fanal infected the previous year was investigated. In all three years, the infected plant material was placed in the trees throughout the winter and the following growing season; in two of the years, fruit and peduncles were also placed on the ground in the autumn or the following spring. Old fruit and peduncles formed conidia throughout the season, with a peak in May and June. Spore numbers declined over the season, but the decline was more rapid for plant material on the ground than in the trees. On average over 2 years, 68.7, 24.0, or 7.3% of the inoculum came from fruit placed in the trees, placed on the ground in spring, or placed on the ground the preceding autumn, respectively. The number of fruit and peduncles attached to the trees in a planting of cv. Hardangerkirsebær was followed from February to July one year, and although there was a decline over time, fruit and/or their peduncles were still attached in substantial numbers in July, thus illustrating their potential as sources of inoculum. In observations over 2 years in a heavily infected orchard of cv. Stevnsbær, 75 and 47% of flowers and newly emerged fruit, respectively, were infected. Artificially inoculated flowers and fruit produced conidia until harvest, with a peak in mid-July. It may be concluded that previously infected and overwintered, as well as newly emerged tissue of sour cherry, may serve as sources of inoculum of C. acutatum throughout the growing season.
Subject
Plant Science,Agronomy and Crop Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献