Report of Tomato yellow spot virus Infecting Leonurus sibiricus in Paraguay and Within Tomato Fields in Brazil

Author:

Fernandes-Acioli N. A. N.1,Boiteux L. S.2,Fonseca M. E. N.2,Segnana L. R. G.3,Kitajima E. W.4

Affiliation:

1. Dept. Fitopatologia, UnB, Brasília-DF, Brazil

2. CNPH/Embrapa, Brasília-DF, Brazil

3. Univ. Nac. Assunción, San Lorenzo-DC, Paraguay; and

4. ESALQ/USP, Piracicaba-SP, Brazil

Abstract

Leonurus sibiricus L. (Lamiaceae) is a subtropical weed frequently found with golden mosaic symptoms. Leonurus mosaic virus (LeMV) was the first begomovirus reported on L. sibiricus in Brazil (3). Later, a new bipartite species (Tomato yellow spot virus, ToYSV) was reported affecting tomatoes, beans, and also L. sibiricus (1,2). A survey of begomovirus isolates was conducted within tomato fields also displaying high incidence of plants with begomovirus-induced symptoms. Thirty L. sibiricus and 33 tomato samples were collected (2007 to 2012) in nine districts in Paraná State, Brazil. Two L. sibiricus isolates were also obtained within citrus orchards in Major Otaño, Itapúa, Paraguay. Total DNA was extracted from all 65 isolates and PCR assays were conducted with primers for conserved DNA-A (PAL1v1978/PAR1c496) and DNA-B (PBL1v2040/PCRc1) regions (3). Nucleotide sequence identity of the 1,193-bp DNA-A amplicons of our L. sibiricus isolates ranged from 93.4 to 98.2% with LeMV (GenBank Accession No. U925321) and from 92.4 to 94.8% with ToYSV isolates from tomato (DQ336350.1) and bean (FJ538207). None of the 33 tomato samples was found to be infected by ToYSV, with all having high nucleotide sequence identity (92 to 99%) only with Tomato severe rugose virus (GU358449). Complete DNA-A genome sequence was obtained via a rolling circle amplification-based strategy for one Brazilian L. sibiricus isolate (PR-088) and one isolate from Paraguay (PAR-07). The entire DNA-A genome of PR-088 (JQ429791) had 96.8% nucleotide sequence identity with PAR-07 (KC683374) and ranged from 95.6 to 96.3% with ToYSV isolates from bean, tomato, and L. sibiricus (JX513952). The nucleotide sequence identity of the 487-bp DNA-B amplicon ranged from 87 to 92% among PR-088 (KC 683374); PAR-07 (KC740619) and ToYSV isolates from tomato (DQ336351.1) and L. sibiricus (JX513953.1). Leonurus cuttings infected with the ToYSV (PR-088) were caged together with healthy L. sibiricus and tomato ‘Alambra’ seedlings. Hybridization assays with ToYSV-specific probes (2) and sequencing of PCR amplicons indicated that Bemisia tabaci biotype B adults were able to transmit ToYSV to both hosts as reported (1). Our results suggest that L. sibiricus is the main ToYSV reservoir under natural conditions and tomato seems to be an occasional alternative host. In fact, ToYSV has not often detected in tomatoes as observed in a number of extensive surveys (4). So far, the complete LeMV genome is not available for comparison (3). However, our analyses with a DNA-A segment indicated that LeMV and ToYSV isolates might represent strains of single virus at the current threshold of 89% nucleotide sequence identity for Begomovirus species discrimination (4). Thus, a reappraisal of the taxonomic status of ToYSV is necessary to clarify its genetic relationship with LeMV. This is the first report of ToYSV on L. sibiricus in Paraguay. References: (1) J. C. Barbosa et al. Plant Dis. 97:289, 2013. (2) R. F. Calegario et al. Pesq. Agrop. Bras. 42:1335, 2007. (3) J. C. Faria and D. P. Maxwell, Phytopathology 89:262, 1999. (4) F. R. Fernandes et al. Virus Genes 36:251, 2008.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3