Overexpression of OsOSM1 Enhances Resistance to Rice Sheath Blight

Author:

Xue X.1,Cao Z. X.1,Zhang X. T.1,Wang Y.1,Zhang Y. F.1,Chen Z. X.1,Pan X. B.1,Zuo S. M.1

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

Abstract

Sheath blight (SB), caused by Rhizoctonia solani, is one of the most destructive rice diseases worldwide. It has been difficult to generate SB-resistant varieties through conventional breeding because of the quantitative nature of rice resistance to SB. In this study, we found that overexpression of the OsOSM1 gene, encoding an osmotin protein belonging to the pathogenesis-related protein 5 family, is able to improve rice resistance to SB in field tests. Although there are two osmotin genes in rice, OsOSM1 is the one mainly expressed in leaf sheath at the booting stage, coinciding with the critical stage of SB development in the field. In addition, OsOSM1 expression is strongly induced by R. solani in SB-resistant rice variety YSBR1 but not in susceptible varieties, suggesting its involvement in SB resistance. Overexpression of OsOSM1 (OsOSM1ox) in susceptible variety Xudao 3 significantly increases resistance to SB in transgenic rice. The OsOSM1 mRNA levels in different transgenic lines are found to be positively correlated with their SB resistance levels. Intriguingly, although extremely high levels of OsOSM1 were detrimental to rice development, appropriately elevated levels of OsSOM1 were obtained that enhanced rice SB resistance without affecting rice development or grain yield. The OsSOM1 protein is localized on plasma membrane. OsOSM1 is upregulated by jasmonic acid (JA); furthermore, JA-responsive marker genes are induced in OsOSM1ox lines. These results suggest that the activation of JA signaling pathway may account for the increased resistance in transgenic OsOSM1ox lines. Taken together, our results demonstrate that OsOSM1 plays an important role in defense against rice SB disease and provides a new target for engineering resistance to SB.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3