Affiliation:
1. Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
Abstract
South Tyrol (northern Italy) harbors one of the largest interconnected apple farming areas in Europe, contributing approximately 10% to the apple production of the European Union. Despite the availability of sophisticated storage facilities, postharvest diseases occur, one of which is bitter rot of apple. In Europe, this postharvest disease is mainly caused by the Colletotrichum acutatum species complex. This study aimed to characterize the Colletotrichum spp. isolated from decayed apple fruit collected in 2018 and 2019 in South Tyrol. The characterization of Colletotrichum spp. was accomplished based on multilocus DNA sequences of four different genomic regions—actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (HIS3), and the internal transcribed spacer (ITS) region—as well as morphological and pathogenicity assessment. A phylogenetic analysis based on multilocus DNA sequences showed that the isolates obtained from apples with symptoms of bitter rot belonged to the species Colletotrichum godetiae and Colletotrichum fioriniae, which are part of the Colletotrichum acutatum species complex. A third species isolated from apples belonging to the same species complex, Colletotrichum salicis, was described in this area. Moreover, the Colletotrichum isolates found in this study proved to be virulent on Cripps Pink, Golden Delicious, and Roho 3615/Evelina. To the best of our knowledge, C. godetiae and C. fioriniae have so far never been mentioned as postharvest pathogens of apple in Italy, although the reanalysis of samples collected in the past indicates that these pathogens have been occurring in Italy for at least a decade. So far, bitter rot seems to play a minor role as a postharvest disease in South Tyrol, but it was disproportionately represented on a few scab-resistant apple cultivars, which are increasingly planted in organically managed orchards. Considering that the expansion of organic apple production and the conversion to new potentially Colletotrichum-susceptible cultivars will continue, the present study represents an important contribution toward a better understanding of bitter rot in this geographic area. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Funder
Free University of Bozen/Bolzano
Subject
Plant Science,Agronomy and Crop Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献