Author:
Damasceno Cynthia M. B.,Bishop John G.,Ripoll Daniel R.,Win Joe,Kamoun Sophien,Rose Jocelyn K. C.
Abstract
During invasion of their plant hosts, species of the oomycete genus Phytophthora secrete glucanase inhibitor proteins (GIPs) into the plant apoplast, which bind and inhibit the activity of plant extracellular endo-β-1,3-glucanases (EGases). GIPs show structural homology to the chymotrypsin class of serine proteases (SP) but lack proteolytic activity due to the absence of an intact catalytic triad and, thus, belong to a broader class of proteins called serine protease homologs (SPH). To study the evolutionary relationship between GIPs and functional SP, database searches were used to identify 48 GIP homologs in the P. sojae, P. ramorum, and P. infestans genomes, composing GIPs, SPH, and potentially functional SP. Analyses of P. infestans–inoculated tomato leaves showed that P. infestans GIPs and tomato EGases are present in the apoplast and form stable complexes in planta. Studies of the temporal expression of a four-membered GIP family from P. infestans (PiGIP1 to PiGIP4) further revealed that the genes show distinctly different patterns during an infection timecourse. Codon evolution analyses of GIP homologs identified several positively selected peptide sites and structural modeling revealed them to be in close proximity to rapidly evolving EGase residues, suggesting that the interaction between GIPs and EGases has the hallmarks of a coevolving molecular arms race.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献