Characterization of Components of Partial Resistance, Rps2, and Root Resistance to Phytophthora sojae in Soybean

Author:

Mideros Santiago,Nita Mizuho,Dorrance Anne E.

Abstract

Phytophthora root and stem rot of soybeans caused by Phytophthora sojae is a serious limitation to soybean production in the United States. Partial resistance to P. sojae in soybeans is effective against all the races of the pathogen and is a form of incomplete resistance in which the level of colonization of the root is reduced following inoculation. Other forms of incomplete resistance include the single dominant gene Rps2 and Ripley's root resistance, which are both race-specific. To differentiate partial resistance from the other types of incomplete resistance, the components lesion length, numbers of oospores, and infection frequency were measured in eight soybean genotypes inoculated with two P. sojae isolates. The Rps2 and root-resistant genotypes had significantly lower oospore production and infection frequency compared with the partially resistant genotype Conrad, while the root-resistant genotype also had significantly smaller lesion lengths. However, the high levels of partial resistance in Jack were indistinguishable from Rps2 in L76-1988, based on the evaluation of these components. Root resistance in Ripley and Rps2 in L76-1988 had similar responses for all components measured in this study. Partial resistance expressed in Conrad, Williams, Jack, and General was comprised of various components that interact for defense against P. sojae in the roots, and different levels of each component were found in each of the genotypes. However, forms of incomplete resistance expressed via single genes in Ripley and Rps2 in L76-1988, could not be distinguished from high levels of partial resistance based on lesion length, oospore production, and infection frequency.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3