Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382

Author:

Alfano G.,Ivey M. L. Lewis,Cakir C.,Bos J. I. B.,Miller S. A.,Madden L. V.,Kamoun S.,Hoitink H. A. J.

Abstract

A light sphagnum peat mix inoculated with Trichoderma hamatum 382 consistently provided a significant (P = 0.05) degree of protection against bacterial spot of tomato and its pathogen Xanthomonas euvesicatoria 110c compared with the control peat mix, even though this biocontrol agent did not colonize aboveground plant parts. To gain insight into the mechanism by which T. hamatum 382 induced resistance in tomato, high-density oligonucleotide microarrays were used to determine its effect on the expression pattern of 15,925 genes in leaves just before they were inoculated with the pathogen. T. hamatum 382 consistently modulated the expression of genes in tomato leaves. We identified 45 genes to be differentially expressed across the replicated treatments, and 41 of these genes could be assigned to at least one of seven functional categories. T. hamatum 382-induced genes have functions associated with biotic or abiotic stress, as well as RNA, DNA, and protein metabolism. Four extensin and extensin-like proteins were induced. However, besides pathogenesis-related protein 5, the main markers of systemic acquired resistance were not significantly induced. This work showed that T. hamatum 382 actively induces systemic changes in plant physiology and disease resistance through systemic modulation of the expression of stress and metabolism genes.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3