Understanding Environmental and Physiological Factors Affecting the Biology of Diaporthe ilicicola, the Fungus Causing Latent Fruit Rot in Winterberry

Author:

Emanuel Isabel B.1,Laird Aleacia E.1,Hand Francesca Peduto1ORCID

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Columbus, OH 43201

Abstract

Fruit rot in winterberry is associated with a complex of fungal pathogens. Among them, Diaporthe ilicicola plays a unique role by infecting flowers at bloom, resulting in symptom development in mature fruit. This research aimed to identify at what stage of maturation Ilex fruit can develop disease symptoms and correlate changes in fruit physiology (sugar and phenolic content) and environment (temperature and light intensity) with disease incidence. Correlation data informed in vitro studies testing the ability of putative factors to alter growth of D. ilicicola and select opportunistic fungi within the fruit rot complex: Alternaria alternata, Colletotrichum fioriniae, and Epicoccum nigrum. Results indicated that Ilex fruit do not develop symptoms until 81 to 108 days after inoculation. Temperature and fruit phenolic content were negatively correlated with disease incidence, while fruit sugar concentration and light intensity were positively correlated. In vitro assays revealed that sugar concentration had no effect on the growth of D. ilicicola, but increased light intensity increased hyphal growth and pycnidium formation. Additionally, phenolics extracted from fruit inhibited spore germination in A. alternata, induced secondary conidiation in C. fioriniae, and late season phenolic extracts increased hyphal melanization and pycnidial formation in D. ilicicola. Finally, drops in field temperatures, when replicated in vitro, resulted in a decrease in hyphal growth and spore germination for all fungi. These results suggest that changes in Ilex fruit phenolics during maturation and the increased exposure to light following defoliation may play a role in symptom development by altering D. ilicicola growth within the fruit.

Funder

USDA-NIFA-AFRI Education

Ohio State University College of Food, Agricultural, and Environmental Sciences

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3