First Report of Tobacco Ringspot Virus Infecting Pawpaw Orchard (Asimina triloba (L.) Dunal) in North America

Author:

Maclot François Jules1,Mandujano Mario2,Nakasato Kota1,Byrne Jan3,Paudel Sita4,Guyer Daniel5,Malmstrom Carolyn1

Affiliation:

1. Michigan State University, 3078, Plant Biology, East Lansing, Michigan, United States;

2. Michigan State University, 3078, Plant, Soil and Microbial Science, East Lansing, Michigan, United States;

3. Michigan State University, 3078, Plant, Soil, and Microbial Sciences, East Lansing, Michigan, United States, ;

4. University of Minnesota College of Food Agricultural and Natural Resource Sciences, 123768, Plant Pathology, Saint Paul, Minnesota, United States;

5. Michigan State University, 3078, Biosystems and Agricultural Engineering, East Lansing, Michigan, United States;

Abstract

Pawpaw (Asimina triloba (L.) Dunal, Annonaceae) is a fruit tree native to eastern North America, increasingly grown for commercial production in the United States (Callaway, 1992; Layne, 1996), Europe, and Western Asia (Brannan and Coyle, 2021; Lolletti et al., 2021). In 2012, virus-like symptoms were noticed in a 0.3 ha pawpaw orchard at Michigan State University Plant Pathology Research Station; ~30% of the trees presented symptoms which included foliar mosaic, vein yellowing, and necrosis, and were first mistaken for nutrient (magnesium/zinc) deficiency. Trees were treated for magnesium/zinc deficiency but continued to decline in fruit yield and overall vigor, and typically died within 3─4years after symptoms were first observed (Fig. S1). Preliminary testing using Agdia ImmunoStrips for cucumber mosaic virus, impatiens necrotic spot virus, tobacco mosaic virus, tomato spotted wilt virus and the genus Potyvirus were negative. However, icosahedral virus particles were observed by TEM (Fig. S2). To establish virus identity, we deep-sequenced tissue from a symptomatic pawpaw obtained from same site in summer 2021. Virus particles were purified , and virion-associated nucleic acids (VANA) were extracted using the Purelink viral RNA/DNA kit (Invitrogen) (Maclot et al., 2021). Both viral RNA and DNA were subjected to high-throughput sequencing (HTS) on the Illumina NextSeq 500 platform (GIGA, University of Liege, Belgium). A total of 574,274 trimmed reads (150 nt read length) were de novo assembled using Geneious Prime 2022.2.2 software (https://www.geneious.com) and subjected to BLASTn analysis. Two contigs of 7511 bp (average coverage: 1048) and 3924 bp (average coverage: 3012) showed 94% and 95% nt identities with tobacco ringspot virus (TRSV) RNA1 isolate YW (MT042825) and RNA2 isolate OH19 (MT561435) respectively. These two contigs (Accession no. OP589177 and OP589178) covered the complete TRSV genome for each segment. HTS found no other plant-associated viral / virus-like sequences in this symptomatic pawpaw sample. To further confirm TRSV infection, leaf extract from this sample was tested with RT-PCR using primers specific to the RdRp gene of TRSV RNA1 (Forward, 5’-TAACCTCATTGCAGTTGATCCTT-3’; Reverse, 5’-TAATTCAAGCTCAGGTCTCTTCT-3’; 739 bp amplicon) and the coat protein of TRSV RNA2 (Forward, 5’-TCATGCTTAAAGATGCAGATGTG-3’; Reverse, 5’-TATAAAGCTCCGCACTAGAAAACA-3’; 753 bp amplicon). Sanger sequence analysis showed 99.5% and 99.8% nt identity between the amplicons and the HTS contigs (RNA1 and RNA2 respectively) assembled from the pawpaw sample, and the amplicons likewise matched GenBank TRSV sequences (91.7% and 95.6% nt identities respectively with TRSV RNA1 isolate CmTX-H (MN504766) and TRSV RNA2 isolate IA-1-2017 (MT563079)). We further screened for TRSV infection in leaves from four symptomatic and three non-symptomatic pawpaw trees collected from the same site in 2022. RT-PCR revealed positive infection in all four symptomatic samples and one of the three (33%) non-symptomatic samples. Our results confirm the presence of TRSV infection in symptomatic pawpaw trees and emphasize the importance of also monitoring non-symptomatic trees. We confirmed graft transmission with 100% transmission rate observed in 200 trees grafted from a TRSV-infected pawpaw (Shenandoah cultivar), and investigation of other transmission vectors is on going. Because of TRSV’s wide host range (Tolin, 2008), its broad transmission profile in other crops (via nematodes, thrips, seeds, sap inoculation, and grafting) (Hill and Whitham, 2014), and the notable decline observed in infected pawpaws from different cultivars (10-35, NC-1, Overleese, Pennsylvania-Golden, Shenandoah, Sunflower, Wabash), TRSV appears to pose a new threat to pawpaw orchards. To the best of our knowledge, this is the first report of TRSV infecting pawpaw in North America and the world.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3