Investigation of myo-Inositol Catabolism in Rhizobium leguminosarum bv. viciae and Its Effect on Nodulation Competitiveness

Author:

Fry Judith,Wood Martin,Poole Philip S.

Abstract

Three discrete loci required for growth on myo-inositol in Rhizobium leguminosarum bv. viciae have been characterized. Two of these are catabolic loci that code for malonate semialdehyde dehydrogenase (iolA) and malonate semialdehyde dehydrogenase (iolD). IolD is part of a possible operon, iolDEB, although the functions of IolE and IolB are unknown. The third locus, int, codes for an ABC transport system that is highly specific for myo-inositol. LacZ analysis showed that mutation of iolD, which codes for one of the last steps in the catabolic pathway, prevents increased transcription of the entire pathway. It is likely that the pathway is induced by an end product of catabolism rather than myo-inositol itself. Mutants in any of the loci nodulated peas (Pisum sativum) and vetch (Vicia sativa) at the same rate as the wild type. Acetylene reduction rates and plant dry weights also were the same in the mutants and wild type, indicating no defects in nitrogen fixation. When wild-type 3841 was coinoculated onto vetch plants with either catabolic mutant iolD (RU360) or iolA (RU361), however, >95% of the nodules were solely infected with the wild type. The competitive advantage of the wild type was unaffected, even when the mutants were at 100-fold excess. The myo-inositol transport mutant (RU1487), which grows slowly on myo-inositol, was only slightly less competitive than the wild type. The nodulation advantage of the wild type was not the result of superior growth in the rhizosphere. Instead, it appears that the wild type may displace the mutants early on in the infection and nodulation process, suggesting an important role for myo-inositol catabolism.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3