GacA, the Response Regulator of a Two-Component System, Acts as a Master Regulator in Pseudomonas syringae pv. tomato DC3000 by Controlling Regulatory RNA, Transcriptional Activators, and Alternate Sigma Factors

Author:

Chatterjee Asita,Cui Yaya,Yang Hailian,Collmer Alan,Alfano James R.,Chatterjee Arun K.

Abstract

Concerted investigations of factors affecting host-pathogen interactions are now possible with the model plant Arabidopsis thaliana and its model pathogen Pseudomo-nas syringae pv. tomato DC3000, as their whole genome sequences have become available. As a prelude to analysis of the regulatory genes and their targets, we have focused on GacA, the response regulator of a two-component system. The DC3000 gene was cloned by testing for the reversal of phenotypes of an Erwinia GacA mutant. A GacA mutant of DC3000 constructed by marker exchange produces much-reduced levels of transcripts of three alternate sigma factors: HrpL, required for the production of effector proteins and their translocation via the type III secretion system; RpoS, required for stress responses and secondary metabolite production; and RpoN, required for an assortment of metabolic processes and expression of hrpL. GacA deficiency also reduces the expression of hrpR and hrpS, which specify enhancer-binding proteins of the NtrC family required for hrpL transcription; ahlI and ahlR, the genes for quorum sensing signal; salA, a regulatory gene known to control virulence; CorS, a sensor kinase; CorR, the cognate response regulator that controls coronatine biosynthetic genes; and rsmB and rsmZ, which specify untranslatable regulatory RNA species. gacA expression itself is regulated by environmental conditions in DC3000, since transcript levels are affected by growth phase and media composition. The observations that high levels of gacA RNA occur in the hrp-inducing medium and GacA deficiency reduces the levels of rpoS expression implicate an important role of GacA in stress responses of DC3000. Consistent with the effects on hrpL expression, the GacA mutant produces lower levels of transcripts of avr, hrp, and hop genes controlled by HrpL. In addition, GacA deficiency results in reduced levels of transcripts of several HrpL-independent genes. As would be expected, these effects on gene expression cause drastic changes in bacterial behavior: virulence towards A. thaliana and tomato; multiplication in planta; efficiency of the induction of the hypersensitive reaction (HR); production of pigment and N-acyl-homoserine lactone (AHL), the presumed quorum-sensing signal; and swarming motility. Our findings establish that GacA, located at the top in a regulatory cascade in DC3000, functions as a central regulator by controlling an assortment of transcriptional and posttranscriptional factors.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3