Nodulation of Mimosa spp. by the β-Proteobacterium Ralstonia taiwanensis

Author:

Chen Wen-Ming,James Euan K.,Prescott Alan R.,Kierans Martin,Sprent Janet I.

Abstract

Several β-proteobacteria have been isolated from legume root nodules and some of these are thought to be capable of nodulating and fixing N2. However, in no case has there been detailed studies confirming that they are the active symbionts. Here, Ralstonia taiwanensis LMG19424, which was originally isolated from Mimosa pudica nodules, was transformed to carry the green fluorescent protein (gfp) reporter gene before being used to inoculate axenically-grown seedlings of M. pudica and M. diplotricha. Plants were harvested at various intervals for 56 days after inoculation, then examined for evidence of infection and nodule formation. Nodulation of both Mimosa spp. was abundant, and acetylene reduction assays confirmed that nodules had nitrogenase activity. Confocal laser scanning microscopy (CLSM) showed that fresh M. pudica nodules with nitrogenase activity had infected cells containing bacteroids expressing gfp. In parallel, fixed and embedded nodules from both Mimosa spp. were sectioned for light and electron microscopy, followed by immunogold labeling with antibodies raised against gfp and nitrogenase Fe (nifH) protein. Significant immunolabeling with these antibodies confirmed that R. taiwanensis LMG19424 is an effective N2-fixing symbiont of Mimosa spp. Both species were infected via root hairs and, in all respects, the nodule ontogeny and development was similar to that described for other mimosoid legumes. The nodules were indeterminate with a persistent meristem, an invasion zone containing host cells being invaded via prominent infection threads, and an N2-fixing zone with infected cells containing membrane-bound symbiosomes.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3