Author:
de Ilarduya Oscar Martinez,Xie QiGuang,Kaloshian Isgouhi
Abstract
The tomato Mi-1 gene confers resistance to three species of root-knot nematode and potato aphid. We studied changes in expression of jasmonic acid (JA)- and salicylic acid (SA)- dependent defense genes in response to potato and green peach aphids. We determined changes in three PR proteins, lipoxygenase and proteinase inhibitors I and II transcripts, locally and systemically in both compatible and incompatible interactions in tomato. Transcripts for PR-1 were detected earlier and accumulated to higher levels in the incompatible than in the compatible potato aphid/tomato interactions. The transcript profiles of the other genes were similar in compatible compared with incompatible interactions. Pin1 and Pin2 RNAs were detected early and transiently in both compatible and incompatible interactions. In tomato plants containing Mi-1, systemic expression of PR-1 and GluB was detected in both compatible and incompatible interactions at 48 h after infestations with either aphid. These results suggest that aphid feeding involves both SA and JA/ethylene plant defense signaling pathways and that Mi-1-mediated resistance might involve a SA-dependent signaling pathway. Potato aphid feeding generated reactive oxygen species in both compatible and incompatible interactions. However, a hypersensitive response was absent in the Mi-1-mediated resistance response to potato aphids. Reciprocal grafting experiments revealed that resistance is cell autonomous, and local expression of Mi-1 is required for Mi-1-mediated resistance against the potato aphid.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
201 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献