Endophytic Fungal Mutualists: Seed-Borne Stagonospora Spp. Enhance Reed Biomass Production in Axenic Microcosms

Author:

Ernst Michael,Mendgen Kurt W.,Wirsel Stefan G. R.

Abstract

Fungal endophytes mainly belong to the phylum Ascomycota and colonize plants without producing symptoms. We report on the isolation of seed-borne fungal endophytes from Phragmites australis (common reed) that were ascribed to the genus Stagonospora. Nested polymerase chain reaction (PCR) assays revealed that a Stagonospora sp. regularly colonized reed as shown for a period of three years. In spring, it was only detected in roots, whereas in autumn, it could frequently be found in all organs, including seeds. Microcosm experiments revealed that seeds harbored viable propagules of the fungus that colonized the developing germling, indicating vertical transmission. Endophytic growth was confirmed by immunofluorescence microscopy, reisolation of the fungus after surface sterilization, and PCR. Aseptic microcosms were established for studying fungal contributions towards host vitality. Several Stagonospora isolates enhanced reed biomass. Seed-borne endophytic Stagonospora spp. thus can provide improved vigor to common reed, which could be most important when seed-derived germlings establish new reed stands.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3