Apoplastic pH Signaling in Barley Leaves Attacked by the Powdery Mildew Fungus Blumeria graminis f. sp. hordei

Author:

Felle Hubert H.,Herrmann Almut,Hanstein Stefan,Hückelhoven Ralph,Kogel Karl-Heinz

Abstract

To investigate apoplastic responses of barley (Hordeum vulgare L.) to the barley powdery mildew fungus Blumeria graminis f. sp. hordei, noninvasive microprobe techniques were employed. H+- and Ca2+-selective microprobes were inserted into open stomata of barley leaves inoculated with Blumeria graminis f. sp. hordei race A6 conidia. Resistance gene-mediated responses of barley genotype Ingrid (susceptible parent line) and the near-isogenic resistant Ingrid backcross lines (I-mlo5, I-Mla12, and I-Mlg) were continuously monitored from 20 min to 4 days after inoculation. The main events were categorized as short-term responses around 2 h after inoculation (hai), intermediate responses around 8 and 12 hai, and long-term responses starting between 21 and 24 hai. Short-term responses were rapid transient decreases of apoplastic H+- and Ca2+ activities that lasted minutes only. Kinetics were similar for all genotypes tested, and thus, these short-term responses were attributed as nonspecific first encounters of fungal surface material with the host plasma membrane. This is supported by the observation that a microinjected chitin oligomer (GlcNAc)8 yielded similar apoplastic alkalinization. Intermediate responses are trains of H+ (increase) spikes that, being different in susceptible Ingrid and penetration-resistant I-mlo5 (or I-Mlg), were interpreted as accompanying specific events of papillae formation. Long-term events were massive slow and long-lasting alkalinizations up to two pH units above control. Since these latter changes were only observed with near-isogenic hypersensitive reaction (HR)-mounting genotypes I-Mla12 and I-Mlg but not with I-mlo5 or, to a smaller extent, with susceptible Ingrid, both lacking significant rates of HR, they were rated as cell death specific. It is concluded that apoplastic pH changes are important indicators of host-pathogen interactions that correlate with both the different stages of fungal development and the different types of host defense response.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3