Effects of Targeted Replacement of the Tomatinase Gene on the Interaction of Septoria lycopersici with Tomato Plants

Author:

Martin-Hernandez A. M.,Dufresne M.,Hugouvieux V.,Melton R.,Osbourn A.

Abstract

Many plants produce constitutive antifungal molecules belonging to the saponin family of secondary metabolites, which have been implicated in plant defense. Successful pathogens of these plants must presumably have some means of combating the chemical defenses of their hosts. In the oat root pathogen Gaeumannomyces graminis, the saponin-detoxifying enzyme avenacinase has been shown to be essential for pathogenicity. A number of other phytopathogenic fungi also produce saponin-degrading enzymes, although the significance of these for saponin resistance and pathogenicity has not yet been established. The tomato leaf spot pathogen Septoria lycopersici secretes the enzyme tomatinase, which degrades the tomato steroidal glycoalkaloid α-tomatine. Here we report the isolation and characterization of tomatinase-deficient mutants of S. lycopersici following targeted gene disruption. Tomatinase-minus mutants were more sensitive to α-tomatine than the wild-type strain. They could, however, still grow in the presence of 1 mM α-tomatine, suggesting that nondegra-dative mechanisms of tolerance are also important. There were no obvious effects of loss of tomatinase on macroscopic lesion formation on tomato leaves, but trypan blue staining of infected tissue during the early stages of infection revealed more dying mesophyll cells in leaves that had been inoculated with tomatinase-minus mutants. Expression of a defense-related basic β-1,3 glucanase gene was also enhanced in these leaves. These differences in plant response may be associated with subtle differences in the growth of the wild-type and mutant strains during infection. Alternatively, tomatinase may be involved in suppression of plant defense mechanisms.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3