Differential Expression of Two Soybean Apyrases, One of Which Is an Early Nodulin

Author:

Day R. Bradley,McAlvin Crystal B.,Loh John T.,Denny Roxanne L.,Wood Todd C.,Young Nevin D.,Stacey Gary

Abstract

Two cDNA clones were isolated from soybean (Glycine soja) by polymerase chain reaction with primers designed to conserved motifs found in apyrases (nucleotide phosphohydrolase). The two cDNAs are predicted to encode for two, distinct, apyrase proteins of approximately 50 kDa (i.e., GS50) and 52 kDa (i.e., GS52). Phylogenetic analysis indicated that GS52 is orthologous to a family of apyrases recently suggested to play a role in legume nodulation. GS50 is paralogous to this family and, therefore, likely plays a different physiological role. Consistent with this analysis, GS50 mRNA was detected in root, hypocotyls, flowers, and stems, while GS52 mRNA was found in root and flowers. Neither gene was expressed in leaves or cotyledons. Inoculation of roots with Bradyrhizobium japonicum, nitrogen-fixing symbiont of soybean, resulted in the rapid (<6 h) induction of GS52 mRNA expression. The level of GS50 mRNA expression was not affected by bacterial inoculation. Western blot (immunoblot) analysis of GS50 expression mirrored the results obtained by mRNA analysis. However, in contrast to the mRNA results, GS52 protein was found in stems. Interestingly, anti-GS52 antibody recognized a 50-kDa protein found only in nodule extracts. Treatment of roots with anti-GS52 antibody, but not anti-GS50 antibody or preimmune serum, blocked nodulation by B. japonicum. Fractionation of cellular membranes in sucrose density gradients and subsequent Western analysis of the fractions revealed that GS50 colocalized with marker enzymes for the Golgi, while GS52 colocalized with marker enzymes for the plasma membrane. Restriction fragment length polymorphism (RFLP)-based mapping placed the gs52 gene on major linkage group J of the integrated genetic map of soybean. These data suggest that GS50 is likely an endo-apyrase involved in Golgi function, while GS52 is localized on the root surface and appears to play an important role in nodulation.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3