Modeling ‘Candidatus Liberibacter asiaticus’ Movement Within Citrus Plants

Author:

Raiol-Junior Laudecir L.1,Cifuentes-Arenas Juan C.12,Cunniffe Nik J.3ORCID,Turgeon Robert4,Lopes Silvio A.2ORCID

Affiliation:

1. Unversidade Estadual Paulista “Júlio de Mesquita Filho,” 14884-900 Jaboticabal, São Paulo, Brazil

2. Fundo de Defesa da Citricultura, 14807-040 Araraquara, São Paulo, Brazil

3. Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, U.K.

4. Department of Plant Biology, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract

The phloem-limited ‘Candidatus Liberibacter asiaticus’ (Las) causes huanglongbing, a destructive citrus disease. Graft-inoculated potted plants were used to assess Las speed of movement in phloem in the greenhouse, and the impacts of temperature on plant colonization in growth-chamber experiments. For assessment of Las speed, plants were inoculated at the main stem and assessed over time by quantitative PCR (qPCR) or symptoms at various distances from the inoculum. For colonization, the plants were inoculated in one of two opposite top branches, maintained at from 8 to 20°C, from 18 to 30°C, or from 24 to 38°C daily range, and assessed by qPCR of samples taken from noninoculated shoots. For all experiments, frequencies of Las-positive sites were submitted to analysis of variance and binomial generalized linear model and logistic regression analyses. Probabilities of detecting Las in greenhouse plants were functions of time and distance from the inoculation site, which resulted in 2.9 and 3.8 cm day−1 average speed of movement. In growth chambers, the temperature impacted plant colonization by Las, new shoot emission, and symptom expression. After a 7-month exposure time, Las was absent in all new shoots in the cooler environment (average three per plant), and present in 70% at the milder environment (six shoots, severe symptoms) and 25% in the warmer environment (eight shoots, no visible symptoms). Temperature of 25.7°C was the optimum condition for plant colonization. This explains the higher impact and incidence of huanglongbing disease during the winter months or regions of milder climates in Brazil.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3