Time-Dependent Infectivity and Flexible Latent and Infectious Periods in Compartmental Models of Plant Disease

Author:

Cunniffe N. J.,Stutt R. O. J. H.,van den Bosch F.,Gilligan C. A.

Abstract

Compartmental models have become the dominant theoretical paradigm in mechanistic modeling of plant disease and offer well-known advantages in terms of analytic tractability, ease of simulation, and extensibility. However, underlying assumptions of constant rates of infection and of exponentially distributed latent and infectious periods are difficult to justify. Although alternative approaches, including van der Plank's seminal discrete time model and models based on the integro-differential formulation of Kermack and McKendrick's model, have been suggested for plant disease and relax these unrealistic assumptions, they are challenging to implement and to analyze. Here, we propose an extension to the susceptible, exposed, infected, and removed (SEIR) compartmental model, splitting the latent and infection compartments and thereby allowing time-varying infection rates and more realistic distributions of latent and infectious periods to be represented. Although the model is, in fact, more general, we specifically target plant disease by demonstrating how it can represent both the van der Plank model and the most commonly used variant of the Kermack and McKendrick (K & M) model (in which the infectivity response is delay Gamma distributed). We show how our reformulation retains the numeric and analytic tractability of SEIR models, and how it can be used to replicate earlier analyses of the van der Plank and K & M models. Our reformulation has the advantage of using elementary mathematical techniques, making implementation easier for the nonspecialist. We show a practical implication of these results for disease control. By taking advantage of the easy extensibility characteristic of compartmental models, we also investigate the effects of including additional biological realism. As an example, we show how the more realistic infection responses we consider interact with host demography and lead to divergent invasion thresholds when compared with the “standard” SEIR model. An ever-increasing number of analyses purportedly extract more biologically realistic invasion thresholds by adding additional biological detail to the SEIR model framework; we contend that our results demonstrate that extending a model that has such a simplistic representation of the infection dynamics may not, in fact, lead to more accurate results. Therefore, we suggest that modelers should carefully consider the underlying assumptions of the simplest compartmental models in their future work.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3