Enhanced Resistance to Fusarium graminearum in Transgenic Arabidopsis Plants Expressing a Modified Plant Thionin

Author:

Hao Guixia1ORCID,Bakker Matthew G.1ORCID,Kim Hye-Seon1

Affiliation:

1. Mycotoxin Prevention and Applied Microbiology Research Unit, NCAUR, U.S. Department of Agriculture-Agricultural Research Service, Peoria, IL 61604

Abstract

The fungal pathogen Fusarium graminearum causes Fusarium head blight (FHB) on wheat, barley, and other grains. FHB results in yield reductions and contaminates grain with trichothecene mycotoxins, which threaten food safety and food security. Innovative mechanisms for controlling FHB are urgently needed. We have previously shown that transgenic tobacco and citrus plants expressing a modified thionin (Mthionin) exhibited enhanced resistance toward several bacterial pathogens. The aim of this study was to investigate whether overexpression of Mthionin could be similarly efficacious against F. graminearum, and whether transgenic expression of Mthionin impacts the plant microbiome. Transgenic Arabidopsis plants expressing Mthionin were generated and confirmed. When challenged with F. graminearum, Mthionin-expressing plants showed less disease and fungal biomass in both leaves and inflorescences compared with control plants. When infiltrated into leaves, macroconidia of F. graminearum germinated at lower rates and produced less hyphal growth in Arabidopsis leaves expressing Mthionin. Moreover, marker genes related to defense signaling pathways were expressed at significantly higher levels after F. graminearum infection in Mthionin transgenic Arabidopsis plants. However, Mthionin expression did not appreciably alter the overall microbiome associated with transgenic plants grown under controlled conditions; across leaves and roots of Mthionin-expressing and control transgenic plants, only a few bacterial and fungal taxa differed, and differences between Mthionin transformants were of similar magnitude compared with control plants. In sum, our data indicate that Mthionin is a promising candidate to produce transgenic crops for reducing FHB severity and ultimately mycotoxin contamination.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3