Benzoxazines in the Root Exudates Responsible for Nonhost Disease Resistance of Maize to Phytophthora sojae

Author:

Liu Haixu1,An Tai1,Zhao Yifan1,Du Xiuming1,Bi Xiangqi1,Zhang Zhuoqun1,Chen Yufei1,Wen Jingzhi1ORCID

Affiliation:

1. Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People’s Republic of China

Abstract

It has been reported that the root exudates of nonhost maize inhibit Phytophthora sojae because of the presence of benzoxazines in maize roots. To understand the concentrations of benzoxazines (Bxs) in maize root exudates and the molecular mechanism of P. sojae being inhibited, the transcriptomes of P. sojae responding to three different Bxs, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), 6-methoxy-2-benzoxazolinone (MBOA), and benzoxazolinone (BOA), were analyzed by RNA sequencing method. We detected DIMBOA, MBOA, and BOA with a concentration range of 7 to 126 μg/ml in root exudates of three tested maize cultivars (A6565, Pengyu 1, and Xianyu 696). DIMBOA, MBOA, and BOA inhibited chemotaxis and invasiveness of P. sojae zoospores and mycelial growth. The inhibition was regulated mainly by endocytosis and the calcium signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway; meanwhile, the glutathione signaling pathway was activated to increase the antioxidant capacity and efflux of toxic substances. It was speculated that endocytosis plays an important role in the response of P. sojae to Bxs, and the specific functions of genes in this pathway must be further studied. This result provides new insights into the response mechanisms of P. sojae response to Bxs.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3