The Methylcitrate Cycle is Required for Development and Virulence in the Rice Blast Fungus Pyricularia oryzae

Author:

Yan Yuxin1,Wang Huan1,Zhu Siyi1,Wang Jing1,Liu Xiaohong2,Lin Fucheng2,Lu Jianping1ORCID

Affiliation:

1. State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

2. State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University

Abstract

The methylcitrate cycle metabolizes propionyl-CoA, a toxic metabolite, into pyruvate. Pyricularia oryzae (syn. Magnaporthe oryzae) is a phytopathogenic fungus that causes a destructive blast disease in rice and wheat. We characterized the essential roles of the methylcitrate cycle in the development and virulence of P. oryzae using functional genomics. In P. oryzae, the transcript levels of MCS1 and MCL1, which encode a 2-methylcitrate synthase and a 2-methylisocitrate lyase, respectively, were upregulated during appressorium formation and when grown on propionyl-CoA-producing carbon sources. We found that deletion of MCS1 and MCL1 inhibited fungal growth on media containing both glucose and propionate, and media using propionate or propionyl-CoA-producing amino acids (valine, isoleucine, methionine, and threonine) as the sole carbon or nitrogen sources. The Δmcs1 mutant formed sparse aerial hyphae and did not produce conidia on complete medium (CM), while the Δmcl1 mutant showed decreased conidiation. The aerial mycelium of Δmcs1 displayed a lowered NAD+/NADH ratio, reduced nitric oxide content, and downregulated transcription of hydrophobin genes. Δmcl1 showed reduced appressorium turgor, severely delayed plant penetration, and weakened virulence. Addition of acetate recovered the growth of the wild type and Δmcs1 on medium containing both glucose and propionate and recovered the conidiation of both Δmcs1 and Δmcl1 on CM by reducing propionyl-CoA formation. Deletion of MCL1 together with ICL1, an isocitrate lyase gene in the glyoxylate cycle, greatly reduced the mutant’s virulence as compared with the single-gene deletion mutants (Δicl1 and Δmcl1). This experimental evidence provides important information about the role of the methylcitrate cycle in development and virulence of P. oryzae by detoxification of propionyl-CoA and 2-methylisocitrate.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3