Chromosome-Scale Genome Sequence of Alternaria alternata Causing Alternaria Brown Spot of Citrus

Author:

Gai Yunpeng12,Ma Haijie13,Chen Yanan1,Li Lei1,Cao Yingzi1,Wang Mingshuang14,Sun Xuepeng15,Jiao Chen15,Riely Brendan K.2,Li Hongye1ORCID

Affiliation:

1. Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

2. Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A.

3. School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China

4. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China

5. Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract

Alternaria brown spot (ABS), caused by Alternaria alternata, is an economically important fungal disease of citrus worldwide. The ABS pathogen A. alternata tangerine pathotype can produce a host-specific ACT toxin, which is regulated by ACT toxin gene cluster located in the conditionally dispensable chromosome (CDC). Previously, we have assembled a draft genome of A. alternata tangerine pathotype strain Z7, which comprises 165 contigs. In this study, we report a chromosome-level genome assembly of A. alternata Z7 through the combination of Oxford Nanopore sequencing and Illumina sequencing technologies. The assembly of A. alternata Z7 had a total size of 34.28 Mb, with a GC content of 51.01% and contig N50 of 3.08 Mb. The genome is encompassed 12,067 protein-coding genes, 34 ribosomal RNAs, and 107 transfer RNAs. Interestingly, A. alternata Z7 is composed of 10 essential chromosomes and 2 CDCs, which is consistent with the experimental evidences of pulsed-field gel electrophoresis. To our best knowledge, this is the first chromosome-level genome assembly of A. alternata. In addition, a database for citrus-related Alternaria genomes has been established to provide public resources for the sequences, annotation and comparative genomics data of Alternaria spp. The improved genome sequence and annotation at the chromosome level is a significant step toward a better understanding of the pathogenicity of A. alternata. The database will be updated regularly whenever the genomes of newly isolated Alternaria spp. are available. The citrus-related Alternaria genomes database is open accessible through the Citrus Fungal Disease Database. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Chinese Modern Agricultural Technology Systems

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3