Affiliation:
1. Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
Abstract
Root-knot nematodes (Meloidogyne spp.), which cause severe global agricultural losses, can establish a special niche in the root vascular cylinder of crops, making them difficult to control. Endophytic bacteria have great potential as biocontrol organisms against Meloidogyne incognita. Three endophytic bacteria were isolated from plant tissues and showed high nematicidal activity against M. incognita second-stage juveniles (J2) in vitro. The gyrB gene sequence amplification results indicated that the three isolates were Bacillus cereus BCM2, B. cereus SZ5, and B. altitudinis CCM7. The isolates colonized tomato roots rapidly and stably during the colonization dynamic experiment. Three pot experiments were designed to determine the potential of three endophytic bacterial isolates on control of root-knot nematodes. The results showed that the preinoculated B. cereus BCM2 experiment significantly reduced gall and egg mass indexes. The inhibition ratio of gall and egg mass was up to 81.2 and 75.6% on tomato roots and significantly enhanced shoot length and fresh weight. The other two experiments with inoculated endophytic bacteria and M. incognita at the same time or after morbidity had lower inhibition ratios compared with the preinoculated endophytic bacteria experiment. The confocal laser-scanning microscopy method was used to further study the possible mechanism of endophytic bacteria in the biocontrol process. The results showed the localization pattern of the endophytic bacteria B. cereus BCM2-(str′)-pBCgfp-1 in tomato root tissues. Root tissue colonized by endophytic bacteria repelled M. incognita J2 infection compared with the untreated control in a repellence experiment. We isolated an endophytic B. cereus strain that stably colonized tomato and controlled M. incognita effectively. This strain has potential for plant growth promotion, successful ecological niche occupation, and M. incognita J2 repellent action induction. It plays an important role in endophytic bacteria against root-knot nematodes.
Subject
Plant Science,Agronomy and Crop Science
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献