First Report of Tomato yellow leaf curl virus Co-infecting Pepper with Tomato chino La Paz virus in Baja California Sur, Mexico

Author:

Cardenas-Conejo Y.1,Arguello-Astorga G.1,Poghosyan A.2,Hernandez-Gonzalez J.2,Lebsky V.2,Holguin-Peña J.2,Medina-Hernandez D.2,Vega-Peña S.2

Affiliation:

1. Instituto Potosino de Investigación Cientifica y Tecnologica (IPICYT), San Luis Potosí, 78216, Mexico

2. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, 23090, Mexico

Abstract

Chile peppers are among the most common and important crops in the State of Baja California Sur, Mexico, where diverse varieties of this crop are annually cultivated. The “chile ancho” (Capsicum annuum L. var. ancho poblano) is one of the most popular hot peppers that is exported fresh to the United States. During a survey in December of 2007 in an experimental field of the CIBNOR in El Carrizal, one of the principal farm districts in the state, a high incidence of yellowing, stunted growth with shortened internodes, foliage discoloration, malformation and crinkle, abortion of flowers, and reduction in size and quantity of fruit were noted in chile ancho. Symptoms and the presence of large populations of whiteflies in the field suggested a possible viral etiology of disease. The symptoms of disease were successfully transmitted by grafting from field plants to tomato and pepper test plants. Samples from both field and test plants were analyzed by scanning electron microscopy (SEM) and molecular techniques. SEM study revealed groups of geminate particles characteristic of begomoviruses (Geminiviridae) in phloem tissue of randomly selected symptomatic plants (four field and two test plants). Total DNA from 12 symptomatic plants (eight naturally infected and four test plants) was obtained by a modified Dellaporta method and analyzed by PCR using the begomovirus universal primers prRepDGR (2) and prC889 (3). Amplicons of ~1.4 kb were obtained from all plant samples and PCR products from four of them were cloned into pGEM-T Easy vector (Promega, Madison, WI) and subsequently analyzed by restriction fragment length polymorphism (RFLP) using EcoRI and HinfI. Two distinct restriction fragment patterns were observed among the cloned PCR products, indicating the occurrence of at least two viruses in the infected plant tissues. The four examined samples contained the same two begomoviruses according to the RFLP analysis data. The complete sequence of the genomic component A of those viruses was determined by PCR amplification of viral DNA with universal, degenerate primers previously described (2), the subsequent cloning of overlapped PCR products, and sequencing. The full-length DNA-A sequence was assembled and compared with viral sequences available at the GenBank database using BlastN and the ClustalV alignment method (MegAlign; DNASTAR, Madison, WI). The 2,781-bp complete genome sequence of one co-infecting monopartite begomovirus (Accession No. HM459851) displayed the highest identity (99%) with Tomato yellow leaf curl virus (TYLCV), isolate Guasave, Sinaloa (Accession No. FJ609655). The 2,609-bp DNA-A sequence of the second begomovirus exhibited the highest nucleotide identity (96%) with Tomato chino La Paz virus (ToChLPV)-[Baja California Sur] (Accession No. AY339619). The presence of TYLCV in this region of Mexico had not been previously reported nor was ToChLPV detected in pepper until now. To our knowledge, this is the first report of a mixed infection of pepper plants with TYLCV and a bipartite begomovirus in Baja California Peninsula. Since the high frequency of recombination events observed in begomovirus mixed infections involving TYLCV (1), it would be important to monitor the possible emergence of ToChLPV-TYLCV recombinants with higher potential virulence. References: (1) S. García-Andrés et al. Virology 365:210, 2007. (2) A. Mauricio-Castillo et al. Plant Dis. 91:1513, 2007. (3) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3