Four New Host and Three New State Records of Dothistroma Needle Blight Caused by Dothistroma pini in the United States

Author:

Barnes I.1,Walla J. A.2,Bergdahl A.3,Wingfield M. J.1

Affiliation:

1. Department of Genetics, FABI, University of Pretoria, South Africa

2. Northern Tree Specialties, Fargo, ND

3. North Dakota Forest Service, Fargo, ND

Abstract

During 2010 and 2011, Dothistroma needle blight (DNB), also known as red band needle blight, was observed for the first time in Cass and Pembina counties in North Dakota (ND). In Pembina Co., DNB was observed in two sites in the Jay V. Wessels Wildlife Management Area (JWWMA). In September 2009, yellow spots on green needles were observed on some trees along the western edge of one planting. By June 2010, DNB was found on third- and fourth-year needles in both JWWMA plantings. Symptoms had developed into dark brown bands or spots on necrotic needles that contained erumpent black acervuli. In June 2011, similar DNB symptoms were observed on Pinus nigra, P. flexilis, P. ponderosa, P. cembra, and P. albicaulis in the Dale E. Herman Research Arboretum, Cass Co., ND. DNB was collected in July 2011 in Brookings Co., South Dakota (SD), from a seed source provenance planting of P. ponderosa. To identify the species causing the infections, symptomatic needles were collected in 2010 from both sites in JWWMA and then again from all four locations in 2011 on all pine species infected. Needles of P. nigra from a private residence near Fairland in Shelby County, Indiana (IN), were also included in the sample set. The rDNA-ITS was PCR-amplified either directly from conidia obtained from acervuli on the needles or from cultures obtained from isolations. Amplicons were sequenced and a BLAST search was performed in GenBank. The sequences of samples obtained from P. nigra, P. flexilis, P. cembra, and P. albicaulis in ND, P. ponderosa in SD, and P. nigra from IN showed 100% sequence homology with Dothistroma pini (Accession No. AY808302). These isolates were identical to all previously assayed isolates of D. pini from Nebraska, Minnesota, and Michigan in the United States. The P. ponderosa isolates from all three sites in ND differed from the other isolates and contained a 1-bp point mutation from a C to a T at site 72 (sequence deposited in GenBank, accession KJ933441). Mating type was determined using species-specific mating type primers for D. pini (3). All 26 samples from ND and SD were of the MAT-1 idiomorph, while the sample from IN contained the MAT-2 idiomorph. All cultures are maintained at FABI, University of Pretoria, South Africa. The two species that cause DNB, D. septosporum (G. Dorog.) M. Morelet and D. pini Hulbary, are morphologically indistinguishable and molecular characterization remains essential for correct species identification (1). Host and geographical distribution range determinations of Dothistroma spp. made without molecular methods are not valid. To date, species confirmed using DNA sequences in the United States include D. septosporum in the Pacific Northwest states of Oregon and Idaho on P. ponderosa, in Montana on P. contorta v. latifolia, and D. pini in the North Central states of Nebraska, Minnesota, and Michigan on P. nigra (1). This study documents the presence of D. pini in three additional states, including a first report of DNB in ND and SD. It also includes new records of D. pini infecting P. flexilis, P. cembra, P. albicaulis, and P. ponderosa. Results of this study have expanded the documented host range of D. pini in the United States from one (P. nigra) to five species. Globally, D. pini is now known to infect a total of 10 pine hosts (2,4,5). References: (1) I. Barnes et al. Stud. Mycol. 50:551, 2004. (2) I. Barnes et al. For. Pathol. 41:361, 2011. (3) M. Groenewald et al. Phytopathology 97:825, 2007. (4) D. Piou et al. Plant Dis. 98:841, 2014. (5) B. Piskur et al. For. Pathol. 43:518, 2013.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3