First Report of Sclerotinia Stem Rot Caused by Sclerotinia sclerotiorum on Brassica carinata in Florida

Author:

Young H. M.1,Srivastava P.1,Paret M. L.1,Dankers H.1,Wright D. L.1,Marois J. J.1,Dufault N. S.2

Affiliation:

1. North Florida Research and Education Center, University of Florida, Quincy

2. Plant Pathology Department, University of Florida, Gainesville

Abstract

Brassica carinata A. Braun, commonly referred to as Ethiopian rapeseed, a near relative of collards and mustard, has become the object of increasing interest as an oil crop. It has been reported that B. carinata adapts better and is more productive than B. napus (canola) in adverse conditions, such as clay and sandy soils and under low management cropping systems (1). In late February 2012, symptoms typical of sclerotinia stem rot were observed in B. carinata trials (cultivars 090867 EM and 080814 EM) at the University of Florida, North Florida Research and Education Center located in Quincy, FL. Approximately 20 to 30% of the B. carinata cultivar 090867 EM were observed to have symptoms and approximately 5% of cultivar 080814 EM displayed symptoms. Stems had white mycelia growing on the outside, plants were lodging and spherical to cylindrical, 3 to 8 mm, and black sclerotia were found outside and inside bleached stems. Sclerotia from diseased stems were surface sterilized and placed in 9-cm diameter petri plates on quarter strength potato dextrose agar (PDA) amended with 25% lactic acid. Fungal cultures consisting of white mycelia and medium-sized (mean 4 mm), black, irregular sclerotia were consistently recovered and identified as Sclerotinia sclerotiorum (Lib.) de Bary based on morphological characteristics (3). Sequence analyses were conducted on mycelium by extracting fungal DNA with the Qiagen DNeasy Plant Mini Kit (Valencia, CA). PCR amplification was performed using primers ITS1 and ITS4. The BLAST search revealed that the sequence (GenBank Accession No. JX307092) had 99 and 100% sequence identity with S. sclerotiorum GenBank accessions JN013184.1 and JN012606.1. Pathogenicity was determined by inoculating six 1-month-old B. carinata plants (cultivars 090867 EM and 080814 EM) that were grown in greenhouse pots (20 cm in diameter). Mycelia plugs (8 mm in diameter) were excised from the colony margin after 6 days of incubation at room temperature (approximately 25°C), and placed on stems, at the soil line, of B. carinata plants. Six control plants were inoculated with noncolonized PDA plugs. All plants were enclosed in plastic bags that had been sprayed with water on the inside to maintain high humidity and kept in the laboratory at room temperature (approximately 25°C). Symptoms similar to those observed in the field were evident after 3 days on inoculated plants and S. sclerotiorum was reisolated. In the controls, no symptoms developed and the fungus could not be isolated. The experiment was repeated with similar results. The majority of rapeseed production is in North Dakota, where sclerotinia stem rot caused by S. sclerotiorum is a major fungal disease affecting production (2). Currently, there is no significant B. carinata production in Florida; however, interest in biofuels could lead to an increase in planted acreage and sclerotinia stem rot could become a significant disease problem in areas of Florida were B. carinata is planted. To our knowledge, this is the first report of sclerotinia stem rot of B. carinata caused by S. sclerotiorum in Florida. References: (1) M. Cardone et al. Biomass and Bioenergy. 25:623, 2003. (2) L. E. del Río et al. Plant Dis. 91:191, 2007. (3) L. M. Kohn. Phytopathology 69:881, 1979.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3