Molecular Identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum Isolates from the United States and Poland

Author:

Baturo-Ciesniewska Anna1,Groves Carol L.2,Albrecht Kenneth A.3,Grau Craig R.4,Willis David K.4,Smith Damon L.4ORCID

Affiliation:

1. Department of Phytopathology and Molecular Mycology, UTP University of Science and Technology, Kordeckiego 20, 85-225 Bydgoszcz, Poland

2. Department of Plant Pathology

3. Department of Agronomy

4. Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706

Abstract

Symptoms of clover rot caused by Sclerotinia trifoliorum or S. sclerotiorum are identical, making differentiation and identification of the causal species difficult and time consuming. Polymerase chain reaction (PCR) amplification and nucleotide sequencing were used to examine 40 isolates of S. trifoliorum (29 from Poland, 11 from the United States) and 55 isolates of S. sclerotiorum (26 from Poland, 29 from the United States). We determined that amplification of the β-tubulin and calmodulin genes with TU1/TU2/TU3 and SscadF1/SscadR1 PCR primers and the presence of introns and single-nucleotide polymorphisms (SNP) within the ribosomal DNA (rDNA) as detected with NS1/NS8 and internal transcribed spacer (ITS)1/ITS4 PCR primers are effective for rapidly and accurately differentiating between the two species of Sclerotinia. In addition, our research revealed a lack of intraspecies variation within S. sclerotiorum isolates from the United States and Poland using these same molecular markers. We detected a relatively high degree of intraspecies variability among isolates of S. trifoliorum from the United States and Poland using the presence of introns and SNP within the rDNA. SNP and nuclear small-subunit rDNA analyses revealed distinct groups of S. trifoliorum among the isolates used in this study. The results of this study provide useful information for clover breeders and pathologists looking to develop clover varieties with durable resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3