Illumina Sequencing of 18S/16S rRNA Reveals Microbial Community Composition, Diversity, and Potential Pathogens in 17 Turfgrass Seeds

Author:

Ban Li-Ping1,Li Jin-Dong1,Yan Min23,Gao Yu-Hao4,Zhang Jin-Jin2,Moural Timothy W.5,Zhu Fang5,Wang Xue-Min2ORCID

Affiliation:

1. College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China

2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

3. National Animal Husbandry Station, Ministry of Agriculture, Beijing 100125, China

4. The Affiliated High School of Peking University, Beijing 100190, China

5. Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A.

Abstract

The increasing need for turfgrass seeds is coupled with the high risk of dangerous microbial pathogens being transmitted through the domestic and international trade of seeds. Concerns continue to be raised about seed safety and quality. Here, we show that next-generation sequencing (NGS) of DNA represents an effective and reliable tactic to monitor the microbial communities within turfgrass seeds. A comparison of DNA sequence data with reference databases revealed the presence of 26 different fungal orders. Among them, serious plant disease pathogens such as Bipolaris sorokiniana, Boeremia exigua, Claviceps purpurea, and Rhizoctonia zeae were detected. Seedborne bacteria, including Erwinia persicina and Acidovorax avenae, were identified from different bacterial orders. Our study indicated that the traditional culturing method and the NGS approach for pathogen identification complement each other. The reliability of culturing and NGS methods was further validated by PCR with specific primers. The combination of these different techniques ensures maximum sensitivity and specificity for turfgrass seed pathogen testing assay.

Funder

Beijing Food Crops Innovation Consortium

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3