Characterization of a Novel Broad-Spectrum Antifungal Protein from Virus-Infected Helminthosporium (Cochliobolus) victoriae

Author:

de Sá Patricia B.,Havens Wendy M.,Ghabrial Said A.

Abstract

A broad-spectrum anti-fungal protein of ≈10 kDa, designated victoriocin, was purified from culture filtrates of a virus-infected isolate of the plant-pathogenic fungus Helminthosporium victoriae (teleomorph: Cochliobolus victoriae) by a multistep procedure involving ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC). Amino acid sequences, obtained by automated Edman degradation sequencing of RP-HPLC-purified victoriocin-derived peptides, were used to design primers for degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) amplification from H. victoriae DNA and cDNA templates. An open reading frame coding for a victoriocin precursor of 183 amino acids with calculated molecular mass of ≈20 kDa was amplified by PCR from H. victoriae genomic DNA but not from the control fungus Penicillium chrysogenum. Southern hybridization analysis confirmed the presence of the victoriocin gene in all H. victoriae strains tested. Sequence analysis indicated that victoriocin has a sequence motif similar to that found in scorpion short toxin/charybdotoxin and a consensus sequence similar to that found in defensins. Victoriocin, like some other antifungal proteins, including the totivirus-encoded killer proteins, is predicted to be expressed in vivo as a preprotoxin precursor consisting of a hydrophobic N-terminal secretion signal followed by a pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N terminus of the mature victoriocin. A putative cell wall protein of ≈30 kDa (P30) co-purified with victoriocin from cultural filtrates. The potential role of P30 in the antifungal activity of H. victoriae culture filtrates is discussed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3